Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination.

نویسندگان

  • Younggy Kim
  • Bruce E Logan
چکیده

A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Economics of Future Membrane Desalination Processes and Applications

Seawater desalination, the desalination of waters flowing back from hydraulic fracturing processes and brackish water desalination constitute important desalination applications. These have a combined market size in excess of $25 billion per annum and a combined water production rate equivalent to the domestic consumption of over 300 million people. Each application offers its own distinct chal...

متن کامل

Seawater desalination using renewable energy sources

The origin and continuation of mankind is based on water. Water is one of the most abundant resources on earth, covering three-fourths of the planet’s surface. However, about 97% of the earth’s water is salt water in the oceans, and a tiny 3% is fresh water. This small percentage of the earth’s water—which supplies most of human and animal needs—exists in ground water, lakes and rivers. The onl...

متن کامل

Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.

Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC--upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic r...

متن کامل

Sustainable Seawater Reverse Osmosis Desalination as Green Desalination in the 21st Century

Seawater reverse osmosis desalination (SWRO) requires less energy compared with the distillation method and thus is an important technology except Middle Eastern countries whereenergy costs are higher. Recently, even Middle Eastern countries where the distillation method is still a major technology, have begun adopting the RO method in new desalinationplants in line with government ...

متن کامل

Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC)

A microbial desalination cell was developed that contained a stack of membranes packed with ion exchange resins between the membranes to reduce ohmic resistances and improve performance. This new configuration, called a stacked microbial electro-deionization cell (SMEDIC), was compared to a control reactor (SMDC) lacking the resins. The SMEDICþS reactors contained both a spacer and 1.470.2 mL o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 45 13  شماره 

صفحات  -

تاریخ انتشار 2011